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Many efforts have been devoted during the last 40 years to the
measurement of oxidized bases and nucleosides in cellular DNA and
fluids such as urine and plasma [1,2]. This still constitutes a
challenging analytical issue due at least partly to the complexity of
the lesion pattern, the difficulties of detecting low amounts of
oxidatively formed DNA damage, typically within the range of a few
lesions per 107 to 109 normal bases and the elevated risk of artefactual
oxidation [3]. The first attempts to assess the formation of oxidatively
damage to cellular DNA were made at the beginning of the 70's with
the measurement of 5,6-dihydroxy-5,6-dihydrothymine (“thymine
glycol”), one of the main •OH and one-electron oxidation products of
cellular DNA [1], using an indirect approach based on its NaBH4

reduction into 2-methylglycerol [4]. However the insertion of 3H or
14C thymine bases in cellular DNA prior to exposure to oxidizing has
led through self-radiolysis processes to the overestimation of thymine
glycol damage [5]. Related artefactual oxidation process has been also
shown to occur more recently in 32P-postlabeling assays that were
designed for monitoring 8-oxo-7,8-dihydroguanine (8-oxoGua), thus
requiring a tedious HPLC pre-purification of 8-oxo-7,8-dihydro-2′-
deoxyguanosine 3′-monophosphate enzymatically released from
DNA [6]. One may also mention that so far immunoassays that have
been developed for measuring 8-oxoGua and other oxidized bases
including thymine glycol and adenine N1-oxide have not led to
conclusive data [3,7]. This is mostly due, as it has been shown for 8-
oxoGua, to the fact that either polyclonal or monoclonal antibodies
raised against the latter oxidized base exhibit a relatively high cross-
reactivity with the overwhelming guanine bases that is about of 10-4

[7] This is likely to explain the lack of accurate detection of oxidized
bases in DNAwhose levels are at least two orders of magnitude lower!
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The introduction of the gas-chromatography-mass spectrometry
(GC-MS) method in the mid 80's through the pioneering work of
Dizdaroglu [8] has provided a strong impetus to the measurement of
oxidatively generated base damage to cellular DNA. More than 15
oxidized pyrimidine and purine bases have been reported to be
measured in cellular DNA by GC-MS. However, major discrepancies
were observed between the reported yields of 8-oxoGua measured by
CG-MS and HPLC-electrochemical detection (ECD) respectively [9].
The latter method was introduced in 1986 by Floyd et al. [10]
consecutively to the identification of 8-oxoGua as a major •OH-
mediated oxidation product of guanine [11]. The main origin of the
observed higher yield of 8-oxoGua by at least two orders of magnitude
in GC-MS analysis with respect to HPLC-ECD measurement was
explained in terms of spurious oxidation of the overwhelming normal
guanine bases. The average yield of artifactual oxidation was
estimated to be about 10-4 during the derivatization step which is
required for making the base lesions volatile for the GC analysis [for a
review, see 12 and references therein]. Similar artefactual oxidation
reactions were found to occur for several oxidized purine and
pyrimidine bases [12], thus requiring a pre-purification of the
modified bases by HPLC or their specific release from DNA by DNA
repair glycosylases in order to avoid the presence of non modified
bases [13]. A second matter of concern that is indirectly associated
with the GC-MS assay deals with the lack of stability of several
modifications including 2,6-diamino-4-hydroxy-5-formamidopyrimi-
dine (FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde)
under the hot acid formic treatment that is required for the release of
the free bases from DNA [14]. A third contributing factor to the
overestimated values of measured oxidized bases that is shared by all
chromatographic methods has been more recently identified. This has
been shown to be accounted for by adventitious oxidation reactions to
DNA during the extraction step and the subsequent work-up.

More specific and quantitative measurement of oxidatively
damaged DNA nucleosides in cellular DNA is now achieved with the
availability of HPLC associated with electrospray ionization tandem
mass spectrometry (ESI-MS/MS) that involves ionization of the DNA
components in either the positive or negative mode [15–18]. The
detection and quantitation of the DNA lesions are achieved in a highly
accurate way using the multiple reaction monitoring (MRM) mode
and the isotopic dilution technique. This represents so far the best
available assay for monitoring the formation of oxidized nucleosides
and bases when the level of modifications is within the sub-
femtomole range. However it should be stressed that HPLC with a
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single quadrupole (HPLC-MS) which is about 50-fold less sensitive
than HPLC-MS/MS is not suitable for measuring frequency of lesions
within the range of a few modifications per 107 to 109 normal
nucleosides. This is due to the presence of erratic fragments arising
from the ionization of impurities, thus leading to inconclusive data as
illustrated by the overestimated values of radiation-induced yields of
8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxodAdo) and 8-oxo-7,8-
dihydroguanosine (8-oxodGuo) by HPLC-MS [19,20] with respect to
HPLC-MS/MS measurements [1]. This remark applies as well to the
high values of spiroiminodihydantoin nucleosides [21] and (5′R)-5′,8-
cyclo-2′-deoxyadenosine [22] that were detected by HPLC-MS
analysis upon exposure of cellular DNA to one-electron oxidant and
ionizing radiation respectively. It may be added that accurate
measurement of oxidatively generated damage with a frequency
lower than 1 lesion per 109 nucleosides may necessitate the use of
MS3 detection. This has been shown to be the case for the
measurement of tandem base modifications between vicinal guanine
and thymine [23] and guanine and cytosine [24] respectively.

It may be added that a general consensus now exists on
chromatographic methods that are available for the measurement
of 8-oxodGuo in cellular DNA thank to the cooperative efforts of the
25 laboratories that have participated in the European Standard
Committee on Oxidative DNA Damage (ESCODD network) [25,26].
DNA extraction methods have been assessed and compared leading
to recommended protocols [27,28]. It has been shown that the
extent of spurious oxidation of the guanine bases was inversely
proportional to the amount of extracted DNA [29], requiring at least
30 µg of the latter compound in order to minimize the occurrence of
artifactual oxidation. It should however be noted that a novel HPLC-
MS/MS assay has recently become available allowing a reduced
contribution of artefactual oxidation of guanine during DNA
extraction [30]. This should be however validated by further
comparison with existing protocols. Therefore it appears that the
versatile HPLC-MS/MS technique and to a lesser extent the robust
HPLC-ECD method whose application is however restricted to the
detection of electroactive lesions including 8-oxodGo, 8-oxodAdo,
FapyGua, FapyAde and 5-hydroxysubstituted derivatives of 2′-
deoxycytidine and 2-‘deoxyuridine represent the methods of choice
for measuring oxidatively generated damage to cellular DNA at least
under conditions of acute exposure to oxidizing agents. It may be
added that low variations in the frequency of oxidized bases
typically when generated upon exposure to low chronic exposure
to oxidizing agents are better accounted by enzymic assays. The
latter assays involved initial incubation of released DNA with DNA
repair glycosylases and subsequent detection of the DNA strand
breaks thus generated by either the comet assay [31] or the alkaline
elution technique [32].

We would like to stress the importance of formalized comparison
schemes between methods that include inter-laboratory comparison
of identical samples. The progress provided by the ESCODD [25,26]
initiative coupled with the methodological advancement by single
laboratories could not have been achieved by a single group. With
regard to measurement of oxidized DNA lesions in urine a similar
initiative has been established [33]. It may be stressed as discussed in
this issue [34] that HPLC-MS/MSmeasurement of 8-oxodGuo appears
much more accurate and quantitative than the immunodetection
assay [35] that suffers from a lack of specificity due to interference
with urine components including urea [36,37]. It is expected that the
HPLC-MS/MS method which has been applied to the measurement of
8-oxoGua, 8-oxodGuo, 8-oxo-7,8-dihydroguanosine, 8-oxodAdo and
FapyGua [38–45] would be extended to other oxidized nucleosides
thank to the versatility of the tandem mass spectrometry technique.
These include 5,6-dihydroxy-5,6-dihydrothymidine, 5-(hydroxy-
methyl)-2′-deoxyuridine and 5-formyl-2′-deoxyuridine that have
been shown to be generated either by •OH or one-electron oxidation
in cellular DNA [1].
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